

Steinschlagschutznetz - Produkt-Datenblatt

Systembezeichnung: Maccaferri RB 1000

Adresse Hersteller: Officine Maccaferri S.p.A., Via Kennedy 10, 40069 Zola Predosa (Bologna), Italien

Adresse Händler Schweiz: MT Swiss GmbH, Ruchlistrasse 13, 6312 Steinhausen, Schweiz

Grundlagen						
Quelle	Bezeichnung	Autor*in	Datum/Jahr			
1	Grundlagen zur Qualitätsbeurteilung von Steinschlagschutznetzen und deren Fundation – Anleitung für die Praxis	Reto Baumann (BAFU¹), Werner Gerber (WSL²)	2018			
2	Bericht über die Qualitätsbeurteilung des Steinschlagschutznetzes Maccaferri RB 1000 (1000 kJ); Bericht-Nr. 81FE-010121-L-02-BB-01	Armin Senn Rist, Stephan Fricker, Natalia Wyss (BFH³)	04.08.2021			
3	Evaluation Report to European Technical Assessment ETA 16/0263	Antónia Ďuricová (TSUS4)	05.09.2016			
4	Dokumentationen Hersteller	Maccaferri SpA, MT Swiss GmbH				
	Systemhandbuch (technische Dokumentation, Montageanleitung, Wartungshandbuch)	Marco Toniolo (MT Swiss GmbH)	25.05.2021			
	Berechnung Ankerkräfte	Maccaferri SpA	11.03.2020			

¹ Bundesamt für Umwelt BAFU, Worblentalstrasse 68, CH-3063 lttigen; ² Eidg. Forschungsanstalt für Wald, Schnee und Landschaft WSL, Zürcherstrasse 111, CH-8903 Birmensdorf; ³ Berner Fachhochschule BFH, Pestalozzistrasse 20, CH-3401 Burgdorf; ⁴ Technický a skúšobný ústav stavebný, n. o. (Building Testing and Research Institute) TSUS, Studená 3, SK-82104 Bratislava, Slowakei

Systembes	chreibung		(Quellen	3 und 4)
Spezifikation	nen			Quelle
Energie Abso	rption (MEL)	1000 kJ	Stufe 3	3
Nominalhöhe	(MEL)	3.75 m	-	3
Resthöhe (ME	EL)	2.63 m	Klasse A	3
Stützen:	Profil	Rohr, Ø 114.3, Wandstärke 5 mm	-	3
	Stahlqualität	S235 bis S355	-	3
	Länge	3.9 m - 5.9 m	-	4
	Standard Abstand	10 m	-	4
Seile:	Norm	EN 12385-4+A1	-	3
	Durchmesser	18 mm (Tragseile), 16 mm (andere)	-	4
Netz:	Typ / Bezeichnung	Ringnetz	-	4
	Norm (Draht, Beschichtung)	EN 10218, EN 10244-2	-	3
	Drahtdurchmesser	3 mm	-	3
	Anzahl Windungen/Spiralen	3/2	-	3
	Ringdurchmesser	350 mm ± 10 %	-	3
Gewicht des schwersten untrennbaren Bauteils		95 kg (Tragseil bei 60 m Netzbreite)	-	4

Abbremsvorgänge (SEL 1, SEL 2, MEL)						(Quelle 2)		
Test	m	d	V	W	t	Ek	Ew	En
	(kg)	(m)	(m/s)	(m)	(s)	(kJ)	(kJ)	(kJ)
SEL 1	1090	0.81	26.20	3.41	0.24	374.1	36.5	410.6
SEL 2	1090	0.81	26.31	2.55	0.16	377.1	27.3	404.4
MEL	3308	1.16	26.10	4.63	0.30	1'126.7	150.3	1'277.0

Maximale Seilkräfte (SEL 1, SEL 2, MEL) (Qu						(Quelle 2)		
Seil/e	То	Tu	Rhs1+Ab1	Rhs2/3+Ab2/3	Rhs4/5+Ab4/5	At3	Ab5	Ab6
Anzahl Seile	5	5	2	4	4	1	1	1
Nr. Messzelle (Hersteller)	C1	C1	C2	C3	C4	C5	C6	C 7
SEL 1 (kN)	-	-	25.0	51.0	63.2	6.0	28.1	19
SEL 2 (kN)	-	-	79.2	98.3	102.1	6.9	32.9	31
MEL (kN)	131.0	94.6	69.0	117.0	146.1	17.1	52.8	42.4

Ankerkräfte (I	Ankerkräfte (MEL) (Quelle 2 und					
Anker	To+Tu+Sa+sV+msV	Rhs	Rhs_p	Rhs_o		
Anzahl Seile	5	2	2	2		
Nr. Messzelle (Hersteller)	C1	C4	C4	C4		
Test	MEL	MEL	MEL	MEL		
Max. Kraft (kN)	189.2	146.1	108.6	97.8		
Faktor	1.3	1.3	1.3	1.3		
Ersatzlast (kN)	246.0	190.0	141.2	127.1		

Beurteilung von Steinschlagschutznetzen gemäss BAFU (Baumann & Gerber, 2018)

Beurteilung (Punktzahl)						
Kriteri	en	max. möglich	mind. empfohlen	erreicht		
A1	Prioritäre Kriterien	16	16	16		
A2	Beurteilung der Netze	10	8	9		
A3.1	Technische Dokumentation	16	13	14		
A3.2	Montageanleitung (ohne Fangseile)	38	30	38		
A3.3	Wartungshandbuch	19	15	19		
	Total	99	82	96		

Burgdorf, 02. September 2021 Berner Fachhochschule BFH, Pestalozzistrasse 20, CH-3401 Burgdorf

Autor*innen Sachbearbeitung

Rui Jam

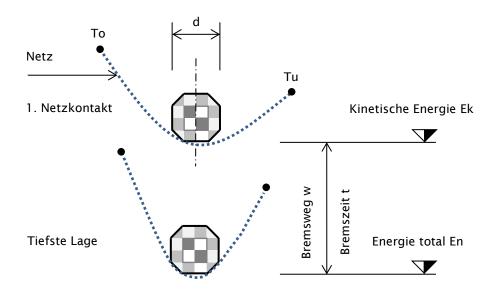
Kompetenzbereichsleiter Geotechnik & Naturereignisse

Armin Senn Rist, Stephan Fricker, Natalia Wyss

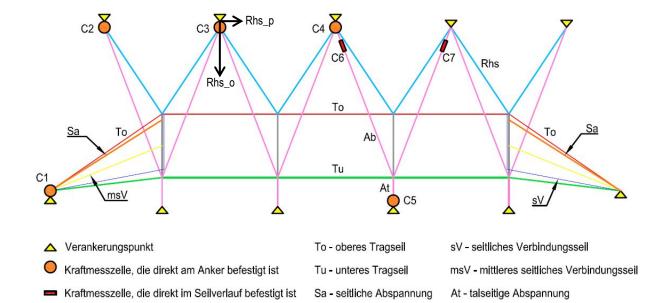
Dr. sc. nat. Umweltwiss., Dr. Dipl. Bauing., BSc Bauing.

Roger Rütti

Dr. sc. nat. Geologie


Bezeichnungen beim Produkt-Datenblatt von Steinschlagschutznetzen

Symbol	Einheit	Bedeutung
d	[m]	Höhe, Breite und Tiefe des Wurfkörpers
m	[kg]	Masse des Wurfkörpers
V	[m/s]	Geschwindigkeit des Wurfkörpers beim ersten Netzkontakt
W	[m]	Bremsweg des Wurfkörpers im Netz
t	[s]	Bremszeit des Wurfkörpers im Netz
Ek	[kJ]	Kinetische Energie des Wurfkörpers beim ersten Netzkontakt
Ew	[kJ]	Potenzielle Energie des Wurfkörpers infolge Bremsweg
En	[kJ]	Totale Energie bezüglich tiefster Lage des Wurfkörpers
To, Tu	[kJ]	Oberes resp. unteres Tragseil, maximale Kraft darin
Sa	[kJ]	Seitliches Abspannseil, maximale Kraft darin
sV	[kJ]	Seitliches Verbindungsseil, maximale Kraft darin
msV	[kJ]	Mittleres seitliches Verbindungsseil, maximale Kraft darin
Rhs	[kJ]	Rückhalteseil, resultierende maximale Kraft darin
Rhs_o	[kJ]	Summe maximaler Rückhalteseil-Kräfte orthogonal zur Verbauungslinie
Rhs_p	[kJ]	Summe maximaler Rückhalteseil-Kräfte parallel zur Verbauungslinie
At*	[kJ]	Talseitige Abspannung Stützenfuss, maximale Kraft darin
Ab*	[kJ]	Bergseitige Abspannung Stützenfuss, maximale Kraft darin
SEL 1	-	Service Energy Level (Betriebs-Energie-Stufe) 1. Test
SEL 2	-	Service Energy Level (Betriebs-Energie-Stufe) 2. Test
MEL	-	Maximum Energy Level (Maximale Energie-Stufe)


^{*} Für die Tests SEL 1, SEL 2 und MEL wurden die Grundplatten für die Stützenfüsse nicht im Untergrund verankert, wie in der Anwendung üblich, sondern frei gelagert und tal- und bergseitig bodennah abgespannt.

Skizze zu Bezeichnungen für Abbremsvorgänge

Skizze zu Bezeichnungen von Messzellen, Seilen und Ankerkräften

Rhs - Rückhalteseil

→ Berechnete Kraft

Ab - bergseitige Abspannung (Boden)